Structured Outline


Course Title: Beginner Data Analysis with Python

📅 Duration: 4 Weeks (Twice a Week)
🖥 Format: Online Live Sessions + Hands-on Assignments


Week 1: Introduction to Data Analysis & Python Basics

📌 Session 1:

  • Introduction to Data Analysis & Its Applications

  • Overview of Python for Data Analysis

  • Setting Up the Environment (Jupyter Notebook, Anaconda, Google Colab)

  • Working with Python Data Structures (lists, tuples, dictionaries)

  • Mini Project: Simple Data Summary with Lists & Dictionaries

📌 Session 2:

  • Introduction to NumPy for Data Handling

  • Creating & Manipulating Arrays (numpy.array, reshape, slicing)

  • Basic Statistical Operations (mean, median, std)

  • Mini Project: Analyzing Temperature Data with NumPy


Week 2: Data Manipulation with Pandas

📌 Session 3:

  • Introduction to Pandas for Data Analysis

  • Loading Data from CSV, Excel, and JSON Files

  • DataFrames & Series: Selection, Filtering, & Sorting

  • Handling Missing Data (dropna(), fillna())

  • Mini Project: Cleaning and Analyzing Sales Data

📌 Session 4:

  • Data Transformation & Aggregation (groupby(), pivot_table())

  • Creating New Columns & Applying Functions (apply(), map())

  • Handling Dates & Time-Series Data

  • Mini Project: Analyzing Daily Sales Trends


Week 3: Data Visualization & Basic Statistics

📌 Session 5:

  • Introduction to Data Visualization with Matplotlib & Seaborn

  • Creating Line, Bar, and Scatter Plots

  • Customizing Plots (Labels, Titles, Colors, Legends)

  • Mini Project: Visualizing Stock Market Trends

📌 Session 6:

  • Introduction to Basic Statistics for Data Analysis

  • Understanding Distributions, Variance, & Correlations

  • Introduction to Hypothesis Testing

  • Mini Project: Analyzing Customer Behavior with Statistical Insights


Week 4: Real-World Data Projects & Final Project

📌 Session 7:

  • Introduction to Data Storytelling & Report Generation

  • Combining Multiple Datasets (Merging & Joining in Pandas)

  • Automating Data Processing Tasks

  • Mini Project: Analyzing COVID-19 Trends

📌 Session 8:

  • Final Project Implementation & Debugging

  • Best Practices in Data Analysis (Data Cleaning, EDA, Documentation)

  • Final Project Showcase & Code Review

  • Next Steps: Moving to Intermediate Data Analysis & Machine Learning


This Course includes

  Lectures
8
   Duration
1 month
   Skill
Beginner
   Language
English
   Certificate
No
   Deadline
13th May 2025
   Starting Date
14th May 2025
   Course Status
Open