📅 Duration: 4 Weeks (Twice a Week) 🖥 Format: Online Live Sessions + Hands-on Assignments
📌 Session 1:
Introduction to Data Analysis & Its Applications
Overview of Python for Data Analysis
Setting Up the Environment (Jupyter Notebook, Anaconda, Google Colab)
Working with Python Data Structures (lists, tuples, dictionaries)
lists
tuples
dictionaries
Mini Project: Simple Data Summary with Lists & Dictionaries
📌 Session 2:
Introduction to NumPy for Data Handling
Creating & Manipulating Arrays (numpy.array, reshape, slicing)
numpy.array
reshape
slicing
Basic Statistical Operations (mean, median, std)
mean
median
std
Mini Project: Analyzing Temperature Data with NumPy
📌 Session 3:
Introduction to Pandas for Data Analysis
Loading Data from CSV, Excel, and JSON Files
DataFrames & Series: Selection, Filtering, & Sorting
Handling Missing Data (dropna(), fillna())
dropna()
fillna()
Mini Project: Cleaning and Analyzing Sales Data
📌 Session 4:
Data Transformation & Aggregation (groupby(), pivot_table())
groupby()
pivot_table()
Creating New Columns & Applying Functions (apply(), map())
apply()
map()
Handling Dates & Time-Series Data
Mini Project: Analyzing Daily Sales Trends
📌 Session 5:
Introduction to Data Visualization with Matplotlib & Seaborn
Creating Line, Bar, and Scatter Plots
Customizing Plots (Labels, Titles, Colors, Legends)
Mini Project: Visualizing Stock Market Trends
📌 Session 6:
Introduction to Basic Statistics for Data Analysis
Understanding Distributions, Variance, & Correlations
Introduction to Hypothesis Testing
Mini Project: Analyzing Customer Behavior with Statistical Insights
📌 Session 7:
Introduction to Data Storytelling & Report Generation
Combining Multiple Datasets (Merging & Joining in Pandas)
Automating Data Processing Tasks
Mini Project: Analyzing COVID-19 Trends
📌 Session 8:
Final Project Implementation & Debugging
Best Practices in Data Analysis (Data Cleaning, EDA, Documentation)
Final Project Showcase & Code Review
Next Steps: Moving to Intermediate Data Analysis & Machine Learning